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Abstract

One approach to autonomous control of high mobility ground vehicle platforms oper-

ating on challenging terrain is with the use of predictive simulation. Using a simulated

or virtual world, an autonomous system can optimize use of its control systems by

predicting interaction between the vehicle and ground as well as the vehicle actuator

state. Such a simulation allows the platform to assess multiple possible scenarios

before attempting to execute a path. Physically realistic simulations covering all of

these domains are currently computationally expensive, and are unable to provide

fast execution times when assessing each individual scenario due to the use of high

simulation frequencies (> 1000Hz).

This work evaluates using an Unreal Engine 4 vehicle model and virtual environment,

leveraging its underlying PhysX library to build a simple unmanned vehicle platform.

The simulation is demonstrated to run at low simulation frequencies (< 1000Hz)

when performing multiple off road driving maneuvers. Real world path telemetry

is used as input to drive the unmanned vehicle’s integrated Pure Pursuit and PID

autonomous driving control algorithms within the simulation. Cross-track-error and

vehicle heading error between the simulation and real world telemetry is then observed

after each maneuver’s execution.

xxiii



It is concluded after running multiple different vehicle maneuvers in real time at low

simulation frequencies, a lower threshold frequency of 190Hz was shown to reliably

control the virtual vehicle model with minimal average cross-track-error and heading

angle deviation. Higher simulation frequencies approaching 400Hz, the recorded sam-

pling frequency of the real world telemetry for each maneuver, had little change in

system performance. Setting the simulation to execute at lower frequencies < 190Hz

resulted in a point of exponential increase in both the overall average cross-track-error

and heading error. Additional simulation failures were also observed when setting the

AV to travel at higher velocities with set simulation frequencies < 190Hz.
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Chapter 1

Introduction

This chapter details the problem and motivation for the thesis along with a brief

analysis of its results. A quick discussion of current work being performed in the field

of autonomous off road vehicle simulations is presented, and past tools and systems

are explained.
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1.1 Overview

As the age of commercial and private autonomous vehicles looms over the horizon,

many hours of research have been poured into a myriad of aspects relating to the

AV industry. Governments and corporations over the past few decades have put

significant effort into improving the capability of AV artificial intelligence, cameras,

and sensor systems to reliably guide AVs through challenging terrain (e.g. mud, fields,

dirt roads, etc.) regarding unstructured off road environments [33] [34]. AVs operating

in these environments cannot rely on pre-existing road signs, speed regulations, and

detailed maps to successfully traverse to their destinations.

The applications that could utilize off road AVs are diverse, adding a substantial

amount of variability to an already complicated task of structured on-road AV envi-

ronments which can utilize pre-existing landmarks, signs, and information while in

operation [1]. Current methods involving path planning and object detection being

used to achieve successful off road AV traversal are quickly changing and improving

[35], establishing the need for faster and cheaper ways of testing the implementation of

newer methods. Computer vision algorithms used in Simultaneous Localization and

Mapping (SLAM) techniques implementing modern camera and LiDAR technologies

are being thoroughly explored to test AV operations in real time [10]. Simulations
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being utilized for these purposes are growing within the fields of digital image process-

ing and artificial neural networks [12]. The incorporation of large data sets generated

either within or outside of these simulations for the purpose of real world evaluation

is becoming a specific key area of research and investment [2].

Many well known 3D computer simulation tools and game engines such as ANVEL,

Car-Sim, Unreal Engine, Gazebo, Unity, etc. [3] have been assessed to provide data

precise enough to model AVs and test various autonomous scenarios. Most simula-

tion systems are layered, requiring a federated approach incorporating multiple unique

simulations specializing in different types of physics-based models running in parallel

with visual modeling to achieve desirable results [4]. Federated systems coupled with

high simulation frequencies leave legacy computer simulation architecture to require

heavy computing power [9]. This generates long computational wait times between

executing each step of the simulation, voiding their use within time-dependent real

time applications. With the recent advancements in modern computers and tech-

nology, researchers have been pushing against these limitations by utilizing popular

open-source software libraries to achieve realistic virtual worlds and simulation envi-

ronments using a single simulation platform such as UE4 [6].

One way to speed up the execution time of a single simulation platform would be

to decrease its simulation frequency. The set simulation frequency is also known as

the simulation’s frames-per-second (FPS) [45]. After the engine computes the needed
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underlying physics and graphical calculations for the next time step of the simulation,

the next image (frame) of the simulation is outputted. This process is called the

”rendering pipeline” [46]. The less calculations the simulation has to do (lowering

the simulation frequency), the faster it performs in real time. The more calculations

the simulation has to do (raising the simulation frequency), the slower the simulation

will perform in real time. Higher simulation frequencies result in smoother and more

accurate simulated results, which is why high simulation frequencies are chosen for

modern AV simulation solutions. Lowering the simulation frequency is desirable for

more time-pressed applications such as path planning though, where a greater number

of paths need to be calculated preferably faster than real time.

Real world trace path telemetry for each maneuver is generated by capturing synchro-

nized GPS and IMU trace data sampled at 400 Hz from a real world High Mobility

Multipurpose Wheeled Vehicle (HMMWV) platform. The HMMWV platform was

used due to the accuracy of the supplied virtual model measurements compared to a

real HMMWV provided by the Keweenaw Research Center (KRC). A human driver

performs each test maneuver within the environment that the virtual world is modeled

to replicate. The UE4 game engine is programmed using C++ to control a virtual

HMMWV vehicle model, recreating each driving maneuver within the simulated en-

vironment using the trace telemetry as input. The programming language C++ is

used as a result of UE4 being natively built to interface with multiple C-based graphic

API libraries such as OpenGL and Vulkan for better performance [42] [43] [44]. A
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modeled AV driver uses an integrated Pure Pursuit and PID controller to steer the

vehicle along each path, moving along the specified coordinates at the desired target

velocity [17].

The UE4 simulation telemetry is recorded at a sampling rate corresponding to the set

simulation frequency during each execution. After each simulated driving test, the

recorded simulation telemetry is then compared to the original trace path telemetry.

Total CTE and heading angle deviation for each maneuver is then averaged and plot-

ted over the tested set of simulation frequencies. Comparisons between the average

CTE and heading angle error against the real telemetry is done to see if lower sim-

ulation frequencies (< 1000Hz) can be deemed reliable, meeting a CTE and heading

error as close to 0 as possible. Simulation step frequency is lowered for each test until

a point of failure is observed and the current driving maneuver cannot be performed

by the modeled HMMWV AV.

In the following chapters, procedures for importing a real world environment into

UE4 using colored geo-referenced point cloud data is explained. The KRC’s outdoor

vehicle test course was used to model the real-to-virtual UE4 world environment due

to the high resolution geo-located point cloud data they provided1. The HMMWV

model and its UE4 vehicle dynamic properties is then described along with the virtual

AV driver using the UE4 Pure Pursuit and PID control C++ implementations.

1The KRC supplied the HMMWV model, geo-located 3D point cloud data, and the real HMMWV
path telemetry used to drive the modeled AV for this thesis.
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1.2 Problem Statement

By integrating common AV velocity and steering control algorithms within a single

visual and physics computer simulation platform, a low simulation frequency needs

to be found that demonstrates reliable CTE and heading angle error performance

between the recorded path telemetry of a real vehicle platform and its virtual coun-

terpart for effective path planning in real time. In order to understand the spatial

and temporal resolution regarding modeled off road AV control within a single simula-

tion platform using real world telemetry, this work evaluates multiple off road vehicle

maneuvers performed by a real HMMWV platform [5] within the simulation. This

thesis then demonstrates a low overall average CTE (< 6.87cm) and overall average

heading angle error (< 4.89 degrees) of a single simulation platform running at low

simulation frequencies (< 1000Hz) when modeling multiple real AV off road path

following maneuvers.

Simulation work has been the focus for researching off road AV applications involving

isolated individual sensors and algorithms to be incorporated within real hardware

separately at a later date [36] [37]. This isolation is due to the uncertainty and

challenge of simulating the entire system of real vehicle dynamics involved with AVs

operating in unstructured off road environments [32]. One of the main downsides of
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many existing simulation architectures for off road simulation is their heavy computa-

tional cost and reliance upon co-simulation [28]. These simulations are also known to

be computationally expensive [26], utilizing multiple interconnecting complex physics

systems and graphical libraries to complete a single data point experiment using a

high simulation frequency to achieve desirable results [9].

Modeled AV path planning simulations that provide reliable CTE results exhibit

evidence that the AV system can reach its target destination when following a selected

path without accident [30]. CTE has commonly been used as a benchmark for path

planning performance [31] and as an active input for path following control algorithms

(e.g. Stanley method) [47]. A common method for operating path finding systems is

to quickly analyze multiple possible routes prior to path execution in real time within

a replicated simulated world of an AV’s environment [3]. By analyzing the CTE and

AV’s heading angle error between the simulation and real world vehicle, comparisons

can be made between the virtual and real world models to observe the simulation’s

reliability at lowered simulation frequencies.

Real time off road AV path planning simulation systems have been a proof-of-concept

affair at the time of writing due to the stated use of a high simulation frequency and

co-simulated architecture [38]. Simulations can take hours, or even days, in real time

to complete when using modern high-end computing hardware [29]. A single reliable
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modern integrated visual and physics platform executing at low simulation frequen-

cies would therefore be beneficial when simulating real AV off road path following

maneuvers. This eliminates the need for co-simulation between multiple platforms

running at high simulation frequencies, and eliminates added computational costs.

A recent build of Unreal Engine 4 (UE4) game engine with its underlying PhysX

architecture [13] is used in this thesis as the integrated visual and physics computer

system for the AV simulation model. Telemetry gathered from a real vehicle platform

is used as input to drive the virtual AV controllers within a modeled real world

environment. The replicated outdoor virtual world allows performance comparisons

between the simulation’s path following accuracy to that of a vehicle platform in the

real world. A low average CTE coupled with low heading error deviations indicates

that the simulated vehicle model is able to execute the same path taken by the real

world vehicle [49].

The results at the end of this experiment analyze a single virtual UE4 HMMWV model

configured to run at low simulation frequencies. The simulation is programmed to

stay within a chosen (1m x 1m) path waypoint CTE threshold during path execution.

This 1m2 padding was chosen to be less than the horizontal HMMWV width between

the front or rear tires.

After all tested paths are executed within the simulation, average CTE and head-

ing error is discussed and compared to the real world path telemetry. The data is
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quantiled and a two-term Gaussian fit-line applied. CTE Gaussian analysis is used

commonly when measuring performance of AV algorithm control [48] [49], where a low

CTE close to 0 is desired to indicate that the AV stayed near the target input path.

A low heading error also indicates stabilization between the simulation environment

physics, e.g. gravity, the AV’s simulated controllers and the model’s actuator state

[50].

The end results demonstrate that future path following AV systems relying on a

single simulation platform like UE4 can execute potential routes for real AV platforms

running at lower simulation frequencies, resulting in low overall average CTE and

heading error. Frequencies < 190Hz were observed to have exponentially growing

average CTE and heading error, further evidenced by an exponential rise in the

slope of the Gaussian best-fit-line assigned to each error data set. Simulation failure

also became more common when executing at higher speeds during more complex

off road vehicle maneuvers. Setting the simulation frequency > 190Hz, approaching

the original input telemetry sampling frequency of 400Hz, produced minimal average

CTE and heading error by comparison. Higher simulation frequencies resulted in

simulations that were able to follow the supplied input path with greater accuracy

compared to simulations set < 190Hz.
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Chapter 2

Background

This chapter discusses background information on building blocks used to set up the

foundation of the following computer simulation path following experiment. Previous

literature is discussed along with differences between this research and aforementioned

literature. The simulation software and framework is explained in context with off

road autonomous vehicle research, along with the justification of using a Pure Pursuit

controller for the virtual AV model.
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2.1 Unreal Engine 4

UE4 is currently used as a visual simulation tool within the public and private AV

research and development community [25] [26]. There still remain questions about

the robustness of its deterministic performance regarding the underlying physics im-

plementation, such as object hit detection or computation lag [2], but its popular use

among video game developers provides a highly populated online community which

regularly gives feedback and documentation alongside steady UE4 engine updates

[13]. The source code is also made publicly available by the developers, allowing

programmers with a good understanding of C++ and the necessary skills to develop

engine specific tools and plugins to achieve specific simulation related goals [14]. The

underlying physics framework, PhysX, is also well known and documented [24], off-

setting some of the prior concerns when compared to other simulation tools such as

”MuJo” [4].

Much work has been done experimenting in creating simulation scenarios of real

world events created specifically for the UE4 game engine. Environments can be

hand-made and created to represent believable scenarios to study various autonomous

technologies involving neural network training [10], pedestrian traffic avoidance [11]

[27], specific LiDAR SLAM techniques [12], and many more. The need and interest

is therefore outgrowing the pace at which AV path planning and safety systems are
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being developed.

A recent UE4 build (v4.26) with the default UE4 mid-sized template vehicle model has

been shown to autonomously drive within a virtual environment using the MUONS

path planning stack developed at Michigan Technological University. It was deter-

mined that UE4 coupled with MUONS handled mid-sized vehicles with complex sus-

pension systems well when compared to using a simpler HUSKY robot platform [15].

MUONS can also virtually incorporate the robot operating system (ROS) libraries

in order to publish and subscribe to virtual sensors required to path plan adequately

within complex unstructured environments, further indicating UE4’s ability to be

modified as needed. The environment created for the latter MUONS experiment was

generated using a portion of real world point cloud data taken from the KRC’s out-

door test course [16]. This emphasizes the value of the KRC course for correlating

further real world to virtual world testing path planning experiments.

For past UE4 experiments mentioned in this section, all telemetry for path planning

control and repeatable algorithm testing was created virtually inside of the simulation.

Paths generated for an AV platform were executed virtually within the simulation,

with no guarantee that the path could be executed on a real AV vehicle. This solely

virtual limitation does not allow correlation between the virtual AV’s predictive re-

liability and the real world vehicle platform it is trying to simulate. This thesis

implements this additional piece of real world information to make an evaluation on
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the repeatability when modeling potential AV scenarios using UE4 and PhysX.

2.2 Previous Simulation Work

Computer simulations to visually model AVs and their attempts at solving problems

associated with real time path following date back to the early 1990s, when the United

States Navy funded research into potential solutions for simulating autonomous un-

derwater vehicles (AUVs) [8]. It was shown that in order to achieve a complete 3D

visual representation of the simulation, many computers had to be networked to-

gether to provide a successful AUV simulation. Although the complex simulation

architecture is crude by today’s standards, an elegant solution to finding a reliable

simulation to model fast and comprehensive real time AV path planning scenarios is

still being sought after today [2].

Simulations are not only being developed in regards to AUVs and grounded AVs,

but are also being developed within the field of aerial drone autonomy. In 2018, a

drone flight controller was modeled and integrated within a virtually controlled drone,

which was tested in a published study utilizing a UE4 C++ plugin called AirSim

[9]. The UE4 simulation was fed prerecorded virtual world coordinate telemetry

for path following, showing proof-of-concept for potential real world applications.

The simulation frequency of the UE4 engine when sampling the drone path data
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was set to be 1000 Hz, providing waypoint path data 1ms apart from each point

for playback within the AirSim controller. Lower threshold values regarding the

simulation frequency rate were not considered, nor any attempt at testing the system

on a real aerial AV platform outside of the simulation. These questions are brought

to the forefront for this thesis which uses real telemetry, and analyzes lower UE4

simulation frequencies within the context of AV simulation.

A real world example of a modeled AV UE4 simulation interacting with a real AV

has been demonstrated to be a challenging endeavour as of late 2021 [38]. A simple

two-way road was modeled within UE4 representing a real two-way AV test site. The

experiment used two virtual vehicles placed on the simulated road facing the same

direction as each other. One of the simulated vehicles was controlled by a real AV

operating on the actual test course, and the other simulated vehicle was controlled

by a real user equipped with a driving wheel controller connected to the simulation.

The purpose of this experiment was to test the real AV’s crash avoidance system by

having the human controlled virtual vehicle cut into the AV’s lane. This was done

in order to find a solution to prevent the risks involved when testing an AV safety

system in real life. The experiment proved that this virtual-to-real AV interaction

was feasible, as the real AV was shown to be able to respond to the virtual vehicle

and its simulated environment. However, the response from the real AV to avoid the

simulated vehicle was found not reliable or accurate enough for use in testing actual

AV safety systems.
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Other 3D simulation platforms that are similar to open source environments such as

UE4 are being used in the field as well. One example is the simulation software Vortex,

which has been used within the last year to test off road vehicle wheel-soil interaction

models [33]. This software has shown to be promising in isolated scenarios, but does

not have the support of a wider development community and consistent updates from

the first-party developers that exist on the UE4 platform. For this reason, UE4 was

chosen for the thesis experiment instead of other modern simulation solutions such

as Vortex.

What is not addressed by these experiments is the real computation time needed

when running each simulation at a set simulation frequency, and how the simulation

frequency impacts the simulation’s overall performance. AV models have been created

within UE4 and similar platforms [32], virtual data has been programmed to be used

as an input source during execution [9], and real world AVs have been shown to be

able to react to virtual input data [38], but to draw further conclusions regarding

repeatability of simulated models within the real world, a simulation would also need

to use real world data outside of the virtual environment. This thesis sets up the

experiment and process to use UE4 alongside real world data to analyze AV simulation

performance at different simulation frequencies.
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2.3 Pure Pursuit

Pure Pursuit is an established autonomous steering control method, wherein the

correct steering angle needed for the vehicle to move towards the next look-ahead

waypoint is calculated [17]. The curvature between the current vehicle position and

waypoint position is found, thus setting the vehicle’s needed steering angle on this

found curvature [21]. The calculated steering angle is set to achieve a more ”human-

like” smooth response compared to more simplistic alternatives such as the Carrot

Chasing control algorithm [23], which continually snaps the steering angle to face the

next waypoint at a fixed look-ahead distance.

Pure Pursuit’s ease in implementation while retaining the ”human-like” driving char-

acteristics was preferred over other more complicated path following algorithms such

as the Stanley method, which involves calculating CTE and desired yaw rate to feed

into the controller during operation for lateral stability [22].

A visualization of the Pure Pursuit implementation for this thesis’s experiment within

UE4 can be seen in Fig. 2.1 [17]. The yellow line represents the look ahead vector to

the next waypoint marked with a red circle, and the green line is the calculated path

curve needed to be taken.

More modern methods to incorporate lateral and velocity input control have been

17



integrated into the underlying Pure Pursuit algorithm for use on real world vehicles

to find optimal look-ahead values. This is done by smoothing out turns by averaging

angles needed to turn the vehicle to reach its waypoint destination [18]. The Pure

Pursuit implementation in this thesis relies on the additional lateral control combined

with engine specific UE4 functions, wherein the look-ahead vector is shortened or

lengthened depending on the upcoming steering angle needed to turn the vehicle.

The look-ahead vector is shortened when approaching a heavy turn for example, and

lengthened if following an estimated straight path.

Figure 2.1: Pure Pursuit Example
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The following chapter explains the simulation configuration for this experiment in

more detail, describing the AV Pure Pursuit control algorithm with a flexible look-

ahead vector. Modeling of the HMMWV and KRC test course within UE4 is also

discussed, showing the importation process and procedures to align the real world

coordinate system with that of the virtually simulated world.
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Chapter 3

Simulation Setup

This chapter explains the general overview in setting up the UE4 simulation exper-

iment. The required hardware and software specifications, terrain data importation

methods, Pure Pursuit algorithm implementation, and the process for controlling the

virtual AV using real telemetry is explained. Each simulated driving test maneuver is

also visualized, plotting the paths taken by the real HMMWV during each maneuver.
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3.1 Hardware Specifications

The following Table 3.1 outlines relevant computer hardware components used for

executing the simulation. The parts used are common and commercially available at

the time of writing.

Table 3.1
Hardware Specifications

Type Spec
CPU Intel i9-7920X 2.9 GHz
RAM 128 GB DDR4
GPU NVIDIA GeForce RTX 2070 FE
PWR 1000W
OS Windows 10 64-bit

UE4 version Unreal Engine 4.26.2

3.2 Terrain Importation

Specialized land surveying equipment was utilized by the KRC to create a geo-located

point cloud LiDAR data set of the KRC’s outdoor test course. Drone equipment was

also used along with geo-located aerial images of the test course. The point cloud and

texture data was then combined and transformed into a single .fbx file. This process

was done internally at the KRC and provided for use within this thesis. The .fbx file

was then imported into the mesh editing software Blender [19].
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Each point in the original point cloud (X, Y ), of size Nt, is zeroed using its minimum

coordinate (xmin ymin) to place the origin of the transformed mesh at the (0, 0)

location as seen in [eq. (3.1)]. This zeroing process is done to ensure that the terrain

is compatible with UE4’s world coordinate system, orienting the origin point of the

terrain at the simulated world’s default virtual origin point, (0,0).

(xi, yi) = (Xi − xmin, Yi − ymin) for i = 0, 1, 2, ..., Nt (3.1)

A Python script utilizing Blender’s API is then executed on the mesh, scaling the

terrain mesh using a scaling factor α and dividing the mesh into a user selected

number of corresponding heightmap and texture tiles seen in Fig. 3.1 and Fig. 3.2.

Each tile produced has its heightmap file paired with the overlaid texture image of the

mesh [eq. (3.2)]. This scaling was performed to use UE4’s native landscape terrain

type instead of a single point cloud mesh, trading overall mesh vertex resolution for

simulation performance.

(Xi, Yi) = (Xi, Yi) ∗ α for i = 0, 1, 2, ..., Nt (3.2)
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Figure 3.1: Height-map Files
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Figure 3.2: Texture Files
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The tiles were loaded into UE4 using a custom proprietary C++ plug-in tool ”KRC

Terrain Creator” built using the UE4 editor API landscape creation functionality

and internal engine function library [Fig. 3.3].

Figure 3.3: KRC Terrain Creator UE4 Plugin

The current tile being built has each heightmap pixel and its corresponding pixel

texture color loaded into a buffer within the UE4 editor’s heightmap landscaping

level builder using internal UE4 C++ functions. The tile is then created as a UE4

landscape object and re-scaled and textured internally within UE4 using the plug-in.
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Since the original units of the mesh were centimeters, no additional conversion was

needed to match UE4’s coordinate and unit systems. UE4 uses the metric system

as its default measuring system for distance and length [39], where 1 ”unreal unit”

equates to 1cm. Depending on the tile’s location denoted by its (X,Y) filename, it is

spawned and placed in its proper location within the virtual world. This process is

explained in [Algorithm 1].

Algorithm 1 UE4 KRC Terrain Plugin

1: Hm ← Set of heightmap files
2: Tx ← Set of texture files
3: Ntiles ← Number of tiles to be created
4: i ← iterator
5: for i = 1 to Ntiles do
6: (XL, YL) ← Get (x,y) tile location using filename of heightmap file Hmi

7: L ← UE4::CreateHeightmap(Hmi, Txi) // Create Landscape tile using UE4
engine functions.

8: (XL, YL) = (XL, YL) * α + shift // Apply scaling factor and shift tile origin
location to proper placement.

9: UE4::LoadTile(L, XL, YL) // Load Tile into UE4 world at shifted position
using UE4 editor functions.

10: end for
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A flowchart explaining the terrain importation workflow is outlined in Fig. 3.4, show-

ing a high-level overview of the point cloud and texture data importation process.

Figure 3.4: UE4 Terrain Importation Workflow
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The resulting fully generated terrain landscape shown within the UE4 editor window

is displayed in Fig. 3.5.

Figure 3.5: KRC UE4 Landscape
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3.3 Vehicle Model

A HMMWV vehicle model supplied by the KRC was imported into UE4 [Fig. 3.6] and

configured based on the default advanced vehicle template supplied by the engine.

Basic UE4 vehicle parameters were tuned alongside default UE4 vehicle model values

to correlate with real HMMWV properties as seen in Table 3.2.. The KRC requested

that specific information be redacted regarding the supplied HMMWV vehicle due to

its active use in the military.1.

Table 3.2
HMMWV UE4 Model Parameters

Parameter Setting
Vehicle Mass kg

Center of Mass ( , ) cm
Wheel Base Length cm
Wheel Base Width cm

Wheel Radius cm
Wheel Width cm
Wheel Mass kg

Wheel Max Lat Stiff 2.0
Wheel Lat Stiff 17.0

Wheel Long Stiff 1000
Wheel Friction Scale 1.0

1Any HMMVW-style vehicle model using the default UE4 PhysX vehicle template can be used to
recreate the experiment presented in this thesis.
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Figure 3.6: HMMWV UE4 Model

UE4 vehicle values are directly tied to the PhysX model represented underneath the

visual mesh, calculating the physics interactions between objects in the virtual world

(such as tire-soil interaction)[40]. The focus of this experiment was not to measure

specific physical vehicle dynamic interactions, but rather to focus on the performance

of off road path following maneuvers using estimated UE4 vehicle physics property

values assigned to the model during simulation. [Table 3.2].

3.4 Real-World Telemetry

A real HMMWV was equipped with GPS and IMU sensors to record a driver perform-

ing multiple different maneuvers at different speeds within an off-road environment.

The data was recorded at rate of 400Hz, time synchronized across the necessary GPS
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and IMU devices. The resulting output data is processed into a MATLAB .mat file

format, which was then converted into a CSV file for use as input for the UE4 simu-

lation. 400Hz was chosen due to the need for additional simultaneous testing for an

unrelated HMMWV’s on-board controller needing a 400Hz signal refresh rate.

The KRC test course point cloud data was created in the NAD83 Northing and

Easting coordinate system, while the GPS data for the HMMWV was captured

in the WGS84 latitude and longitude coordinate system. Thus a conversion was

made on each coordinate, utilizing the ”PROJ” C++ library [20] and an up-to-date

packaged transform database, to convert WGS84 coordinates into required NAD83

coordinates for use as waypoints within the simulation [Fig. 3.7].

Figure 3.7: Coordinate Transform

To match up the total number of path coordinates, Np, with the virtual world’s origin
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point at (0,0), each path coordinate (Xp, Y p) is re-zeroed and scaled with the same

process used when importing the terrain seen in [eq. (3.3)].

(xpi, ypi) = (Xpi − xmin, Y pi − ymin) ∗ α for i = 0, 1, 2, ..., Np (3.3)

Velocity of the vehicle model in UE4 is controlled by a hand-tuned C++ PID

controller, which adjusts the acceleration of the virtual vehicle until the recorded

velocity is reached, as indicated by the real world trace telemetry at the given time

step. This creates a virtual ”cruise control” that adjusts the speed as needed. Default

UE4 PhysX brake and engine torque is used to apply acceleration and brake pressure

to meet the target velocity. The PID values used for the acceleration controller are

shown in Table 3.32.

Table 3.3
PID Values

Variable Value
P 6.0
I 0.25
D 0.0

2Plots showing the PID controller following the vehicle velocity of each maneuver’s input path
telemetry is presented at the end of this thesis in Appendix A.1.
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3.5 Pure Pursuit Implementation

Pure pursuit finds the curvature needed to steer the vehicle towards the next waypoint

chosen by the look ahead distance [17]. The algorithm is generalized for use in UE4

as shown in Algorithm 2.

At each time step, [Algorithm 2] is run to set the navigated vehicle’s steering angle,

δ, to point towards the next destination waypoint area, P , which is a padded (1m x

1m) area centered around the next destination point, dφ, chosen using the look-ahead

value, φ. The total time of one time-step, s, is found using the frequency of the

simulation, fsim [eq. (3.4)], and is used to move the current time-step forward when

searching for P .

s =
1

fsim
(3.4)

The steering angle is then found. As t is the current time-step of the simulation, d is

the set (x,y) trace path destinations, and K is the total number of time-steps used

for the calculation. The steering angles for the next K time-steps are found for the

current vehicle’s location m and averaged together to acquire the next steering angle

[18] [eq. (3.5]. A visualization of this can be seen in [Fig. 3.8].
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Figure 3.8: Steering Angle Calculation

δturn =
1

K
∗

K∑
i=t

δi (3.5)

The implementation described in Algorithm 2 pads each upcoming waypoint desti-

nation dφ to form the target area P , giving the vehicle a threshold of forgiveness to

prevent it from missing the pixel representing the destination waypoint coordinate
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placed onto the imported terrain. The area chosen for the padding was set and ar-

bitrarily determined before the experiment to be 1m2, as to not exceed the width of

the vehicle from its CG point. Thus, a target padding threshold of (1m x 1m) was

configured for each waypoint during the simulation, allowing a maximum square CTE

area of 1m around any given waypoint destination.

Algorithm 2 Pure Pursuit

1: while waypoints exist do
2: m ← Current vehicle (x,y) position
3: φ ← Get look-ahead distance using [Algorithm 3]
4: dφ ← Get Destination waypoint based on φ
5: P ← Pad waypoint creating a (1m x 1m) destination area centered around

waypoint dφ.
6: while m is not within the destination area P do
7: m ← Refresh current vehicle location
8: δ ← Calculate steering angle using [eq. (3.5)].
9: Set vehicle steering ← δ

10: t = t + s // Increase time-step of the simulation
11: if m misses P then

→ Simulation Failed
12: end if
13: end while
14: end while

Missing the destination area will result in the vehicle attempting to return to the

trace path, causing the controller to sharply turn the wheel in an attempt to steer

and reorient the vehicle back towards the missed waypoint. The resulting action

causes the vehicle to endlessly spin around in circles when traveling at high velocities.

This action is considered to be a point of failure for the simulation, and therefore the
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simulation is ended and noted as ”Did-not-Finish” (DNF).

The look-ahead distance is not fixed, and is set to shorten in the event of an ap-

proaching turn or lengthen along a straight path as described in Algorithm 3. A

starting minimum look-ahead value, φmin, is set by taking the floor value of a chosen

number of time-steps, kφ, over the original sensor frequency at which the trace data

was sampled, ftrace [eq. (3.6)]. The steering angle needed is calculated for each future

destination time-step at the current look ahead value, dφ.

φmin = b kφ
ftrace

c (3.6)

If the resulting steering angle, δ, is larger than a preset turning angle, δturn, a turn is

detected and the look ahead value is found. If the look ahead value reaches the max

look ahead, φmax, the current set of destinations is found to be nearly a straight line.

The look-ahead value is returned to Algorithm 2.

This flexible look-ahead value helps prevents the vehicle from oscillating, gradually

re-adjusting the steering angle for every time step. This is common for many path

following AV algorithms and found implemented in many out-of-the-box solutions,

such as MATLAB’s Pure Pursuit controller [41].
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Algorithm 3 Look-Ahead Calculation

1: φ ← Set to minimum look-ahead distance of φmin found using [eq. (3.6)]
2: dφ ← Get Destination waypoint based on φ
3: δ ← UE4::SteeringAngle(dφ) // Get current steering angle of vehicle towards

destination using UE4 engine function.
// Loop until max look-ahead is reached, or a turn is detected.

4: while φ < φmax or δ < δturn do
5: φ ← φ + 1 // Increase look ahead time-step
6: dφ ← Get new Destination waypoint based on new φ
7: δ ← UE4::SteeringAngle(dφ) Get new steering angle.
8: end while
9: Return φ // Return look ahead after loop

3.6 Simulation Tests

This section will outline the three sets of tests and their respective paths fixed at

a simulation frequency, fsim, which is be referred to as the simulation’s frames-per-

second (FPS) by UE4. The set frequencies for each test start at 60Hz and increase

fsim by 10Hz for each test until 400Hz is reached. Table 3.4 lists the test number, the

maneuver being performed, and the maximum speed of the vehicle during execution.

Table 3.4
Simulation Tests

Test Maneuver Max Speed(mph)
1 Straight 5
2 Left 10
3 Left 15
4 SS 20
5 SS 25
6 SS 30
7 DLC 30
8 DLC 35
9 DLC 40
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Figure 3.9 displays a straight path taken by Test 1 (St5 ) within the first set of

calibration tests 1, 2, and 3. These tests are used to calibrate the PID control values

for proper behavior3, as well as make sure the Pure Pursuit controller’s flexible

look-ahead distance works as expected. The HMMWV travels in a straight line for

St5 at a low speed of 5mph. Figure 3.10 displays Tests 2 (Left10 ) and 3 (Left15 ),

where a sharp left hand turn is done at the end of St5 moving at slightly higher

speeds of 10 and 15mph.

Figure 3.9: Straight Path Trace

3Velocity trace plots used when tuning the calibration tests are shown in Appendix A.1
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Figure 3.10: Left Hand Turn Path Trace
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Figure 3.11 displays the path taken by the secondary set of tests 4 (SS20 ),

5 (SS25 ), and 6 (SS30 ). The HMMWV takes a wide sweeping left-hand turn

called a Step Steer (SS) going at higher speeds of 20, 25, and 30mph. These

tests demonstrate the simulation being able to execute a controlled sweeping turn

of the vehicle 180 degrees while moving at higher velocities in an off road environment.

Figure 3.11: SS Path Trace
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Figure 3.12 displays the last maneuver taken by the final set of tests 7 (DLC30 ),

8 (DLC35 ), and 9 (DLC40 ). The HMMWV performs a Double Lane Change

(DLC) moving the vehicle at higher speeds of 30, 35, and 40mph. These three tests

demonstrate the ability for the simulation to execute a more difficult steering path

taken at higher velocities within off road environments.

Figure 3.12: DLC Path Trace
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Chapter 4

Results

This chapter details the CTE and heading error results after simulating the three

sets of maneuvers described previously in Table 3.4. Velocity error was not taken

into consideration, as additional vehicle dynamic tuning aside from the default brake

torque and engine RPM configuration supplied by UE4 was out of scope for this

thesis. Each test maneuver and resulting data set has a corresponding table and

MATLAB generated line plots. Simulations that failed at specified frequencies are

marked as DNF.

43



4.1 Overall Results

Table 4.1 and Table 4.2 display the quantiles for the overall average CTE (CTE) and

Heading error (Head.Err.) for all tested simulation frequencies during each maneuver

seen in Fig. 4.1 and Fig. 4.2.

Table 4.1
Average CTE Quantiles

Quantile CTE(cm)

Q1 6.3389

Q2 6.4189

Q3 6.8727

Table 4.2
Average Heading Error Quantiles

Quantile Head.Err.(deg.)

Q1 2.7372

Q2 3.6950

Q3 4.8862
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A two-term Gaussian curve was fit to the overall CTE data over each tested frequency

for analysis. CTE is seen to grow linearly until an exponential growth point happens

in the Gaussian’s slope [Fig. 4.1]. The frequency before the rise in slope and before

the first CTE value above Q3 was chosen as the threshold frequency, 190Hz. This

threshold ensures all maneuvers are able to complete down to the lower frequency of

190Hz.

Figure 4.1: Overall Average CTE
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A two-term Gaussian curve was again fit to the overall Head.Err. data over each

tested frequency for analysis. Head.Err. is seen to grow linearly until an exponential

growth point happens in the Gaussian’s slope [Fig. 4.2]. The frequency before the

sudden rise in slope and before the first CTE value above Q3 was chosen as the

threshold frequency, which was again 190Hz. This threshold ensures all maneuvers

are able to complete down to the lower frequency of 190Hz.

Figure 4.2: Overall Average Heading Error
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4.2 Calibration Tests

Table 4.3 displays the collected data of the simulations at specified frequencies for

the calibration tests. Fig. 4.3 and Fig. 4.4 plot the CTE and Head.Err. of each test

on the same graphs for analysis.

Table 4.3
Calibration Simulation Results

St5 Left10 Left15

Hz CTE(cm) Head.Err.(deg) CTE(cm) Head.Err.(deg) CTE(cm) Head.Err.(deg)
60 1.891522 0.922805 3.082390 15.697267 6.819039 21.225049
70 1.842817 0.757049 2.805024 13.525814 6.196473 18.390512
80 1.833223 0.672022 2.708854 11.881769 5.979504 16.327520
90 1.967582 0.621831 2.673124 10.599547 5.763679 14.669610
100 1.931992 0.562873 2.624452 9.559972 5.62052 13.288782
110 1.787793 0.459340 2.584373 8.712740 5.499453 12.167102
120 1.889159 0.441234 2.723644 8.007371 5.423508 11.216049
130 1.685567 0.400268 2.682468 7.399635 5.331185 10.405371
140 1.816073 0.364401 3.023863 6.876754 5.226642 9.700805
150 1.78716 0.326872 3.079309 6.434316 5.183404 9.088313
160 1.655485 0.316272 3.013240 6.030094 5.125658 8.547498
170 1.646901 0.299599 3.131273 5.676292 5.060905 8.053036
180 1.713229 0.277426 3.143653 5.365062 5.049087 7.638043
190 1.831148 0.262586 3.119689 5.086318 4.988932 7.253359
200 1.696292 0.248950 2.379170 4.822986 4.962521 6.891421
210 1.711245 0.234282 2.432057 4.599132 4.951152 6.588155
220 1.676641 0.223797 2.328067 4.389601 4.897463 6.290790
230 1.663754 0.210848 2.315582 4.199207 4.890135 6.031354
240 1.880598 0.205233 2.316239 4.026346 4.864323 5.787045
250 1.888980 0.204431 2.391243 3.865517 4.835505 5.553622
260 1.772259 0.193888 2.384717 3.718839 4.845091 5.357040
270 1.801274 0.186497 2.405052 3.583335 4.827863 5.163151
280 1.797556 0.191196 2.321159 3.347964 4.779015 4.977857
290 1.741477 0.185695 2.281089 3.236352 4.800795 4.815137
300 1.737188 0.174694 2.344374 3.034957 4.772164 4.657860
310 1.740281 0.171027 2.323503 3.132990 4.762870 4.534330
320 1.680158 0.162433 2.344374 3.034957 4.748046 4.369146
330 1.895515 0.162490 2.414352 2.947065 4.752296 4.248080
340 1.962175 0.148854 2.300683 2.865992 4.731562 4.122030
350 1.774689 0.150172 2.294771 2.784460 4.727151 4.008068
360 1.842076 0.146906 2.404804 2.712324 4.714672 3.898805
370 1.729449 0.142609 2.385316 2.636866 4.707031 3.813778
380 1.707039 0.143239 2.370392 2.567366 4.685610 3.693285
390 1.770111 0.142322 2.319529 2.505773 4.672859 3.601498
400 1.920164 0.137796 2.312064 2.441258 4.679238 3.515382
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Looking at Fig. 4.3, a low CTE beneath Q1 for test speeds of 5, 10, and 15mph

is demonstrated. A slight exponential growth can be seen developing along with

a higher overall CTE within Test Left15 moving at the highest speed of 15mph

compared to the low CTE of 2-3cm from tests St5 and Left10.

Figure 4.3: Calibration Paths CTE
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A larger difference is viewed between the straight run Head.Err. of Test St5 and

the two tests with a sharp left hand turn seen in Fig. 4.4. A more pronounced

exponential increase is viewed in test Left10 and Left15 running at 10 and 15mph as

the frequency is pushed lower.

Figure 4.4: Calibration Paths Heading Error
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4.3 SS Tests

Table 4.4 displays the collected data of the simulations at specified frequencies for

the SS tests. Fig. 4.5 and Fig. 4.6 plots the CTE and Head.Err. of each test on the

same graphs for analysis.

Table 4.4
SS Test Simulation Results

SS20 SS25 SS30

Hz CTE(cm) Head.Err.(deg) CTE(cm) Head.Err.(deg) CTE(cm) Head.Err.(deg)
60 DNF DNF DNF DNF DNF DNF
70 8.34685 7.843849 DNF DNF DNF DNF
80 7.378466 13.74342 9.773618 7.962279 16.653856 18.60262
90 7.295697 6.098677 9.417886 7.223737 13.762456 16.23756
100 7.376283 11.35264 9.301751 6.643273 12.876025 14.48718
110 7.389835 5.219473 9.196547 12.30031 12.694913 13.28202
120 7.424166 4.856619 9.180739 11.35585 12.620791 12.28828
130 7.371074 4.548482 9.215352 5.322033 12.533267 11.39464
140 7.454406 4.264181 9.232253 4.997223 12.619330 10.65231
150 7.471124 4.022392 9.247021 4.709713 12.585999 9.996108
160 7.461627 3.800314 9.260652 4.453314 12.602511 9.414670
170 7.508097 3.613873 9.275335 4.223100 12.525677 8.893851
180 7.512874 3.434652 9.243983 4.009673 12.522070 8.429641
190 7.496139 3.260702 9.242389 3.821170 12.529353 8.006111
200 7.505121 3.114713 9.261789 3.649053 12.585373 7.633975
210 7.559954 2.974796 9.271124 3.491662 12.566146 7.290773
220 7.582916 5.461032 9.284304 3.347276 12.581700 6.969916
230 7.581328 5.236662 9.290617 3.208219 12.612000 6.679885
240 7.602193 5.028506 9.309110 3.091221 12.613731 6.415007
250 7.60614 4.835649 9.300417 2.971416 12.579530 6.169781
260 7.611008 4.655969 9.316853 2.866622 12.583597 5.941400
270 7.617917 2.366029 9.331010 2.768016 12.583583 5.727286
280 7.571183 2.287132 9.319286 2.675541 12.628793 5.535001
290 7.644691 2.213507 9.369827 2.586961 12.632623 5.351826
300 7.651090 2.144752 9.371148 2.506231 12.604430 5.177705
310 7.627004 2.073992 9.384303 2.431059 12.678157 5.008052
320 7.652097 3.805184 9.402393 2.358695 12.663909 4.863437
330 7.668487 1.960833 9.393157 2.292518 12.695947 4.720198
340 7.634447 1.903365 9.388501 2.227659 12.681464 4.587787
350 7.625379 1.850309 9.396739 2.167384 12.676575 4.459846
360 7.644919 3.393800 9.401565 2.111635 12.669837 4.339754
370 7.664490 3.307112 9.409889 2.056173 12.734031 4.226251
380 7.644102 1.710966 9.399457 2.004550 12.675023 4.117733
390 7.666570 3.140668 9.418030 1.957395 12.747469 4.011392
400 7.687033 3.064693 9.395208 1.910126 12.665688 3.917197
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A higher CTE is observed again in Fig. 4.5 when the vehicle moves at higher

velocities, this time when performing a more gradual SS turn. Test SS30 moving at

30mph shows a sharp increase in CTE when simulating at less than 100Hz. The

sharp increase follows the simulation failing at 70Hz for tests SS25 and SS30, and at

60Hz for Test SS20. These DNFs are caused by the vehicle missing the 1m padding

waypoint area P .

Figure 4.5: SS CTE
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The simulation AV model shows greater deviation from the trace path at lower

frequencies, which can again be seen by the greater Head.Err. data shown in Fig. 4.6

for tests SS20, SS25, and SS30. As the frequency of the simulation is lowered, the

vehicle starts to deviate the original trace path. This is similar to the increase in

Head.Err. seen at higher speeds with low simulation frequency in Tests Left10 and

Left15.

Figure 4.6: SS Heading Error
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This deviation from the trace path is further evidenced by comparing the CTE

during Test SS30 running at 400Hz and 80Hz seen in Fig. 4.7 and Fig. 4.8. The

80Hz CTE shows the vehicle straying farther from the input path during the SS

turn between 15 and 30 seconds compared to the more controlled 400Hz CTE during

execution1.

Figure 4.7: SS30 CTE Error 400Hz

1CTE oscillation comparing higher and lower simulation frequencies are further shown for each
additional maneuver in Appendix A.2.
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Figure 4.8: SS30 CTE Error 80Hz
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4.4 DLC Tests

Table 4.5 displays the collected data of the simulations at specified frequencies for

the DLC tests. Fig. 4.9 and Fig. 4.10 plots the CTE and Head.Err. of each test on

the same graphs for analysis.

Table 4.5
DLC Test Simulation Results

DLC30 DLC35 DLC40

Hz CTE(cm) Head.Err.(deg) CTE(cm) Head.Err.(deg) CTE(cm) Head.Err.(deg)
60 DNF DNF DNF DNF DNF DNF
70 DNF DNF DNF DNF DNF DNF
80 DNF DNF DNF DNF DNF DNF
90 DNF DNF DNF DNF DNF DNF
100 27.341143 8.431303 12.463499 6.006316 DNF DNF
110 18.052394 10.59267 11.885003 5.451120 20.190624 12.94265
120 11.667213 9.619273 13.020851 5.309141 15.062654 16.99220
130 6.243541 3.328311 9.422495 4.120425 12.93372 15.46785
140 4.946065 3.070423 9.422495 4.120425 13.165816 9.410889
150 4.271237 2.712554 9.254976 3.880700 13.129571 13.50725
160 4.100219 2.501189 8.582768 3.600180 12.226453 12.56399
170 3.751231 2.366888 7.627353 3.316967 11.090973 7.532504
180 7.328052 2.495918 7.655718 3.178082 12.316035 11.09435
190 3.836295 2.088717 7.239554 2.972963 11.570381 10.43986
200 3.57391 1.992919 7.011474 2.810644 10.456394 9.839060
210 4.112967 1.897349 7.005286 2.647695 9.931593 5.989013
220 3.516976 1.794904 6.785181 2.531900 10.438969 8.948512
230 3.51787 1.726952 6.631455 2.412152 9.239214 5.476960
240 6.866305 1.776742 6.377403 2.203824 8.370936 8.126489
250 3.988504 1.594770 6.377403 2.203824 8.757278 5.003067
260 3.569377 1.529568 6.356443 2.117250 8.262035 7.727653
270 3.865507 1.490205 6.361691 2.035432 8.409946 7.207064
280 3.849455 1.425977 6.285842 1.962036 8.225969 6.706585
290 3.923436 1.387073 6.161731 1.893797 8.225969 6.706585
300 4.516296 1.336997 6.140598 1.827735 8.189398 6.466630
310 4.561139 1.294941 6.135383 1.716638 8.004916 4.004172
320 4.111466 1.259303 6.135383 1.716638 7.672652 6.260767
330 4.13219 1.216847 6.144427 1.667364 7.863027 5.889834
340 4.075147 1.180006 6.096241 1.615683 7.831302 5.716629
350 4.193705 1.144196 6.066429 1.565091 7.636952 5.715196
360 4.850157 1.118069 6.101322 1.527448 8.169249 5.386204
370 4.912846 1.087531 5.975787 1.481038 7.630288 5.399783
380 5.00752 1.059971 5.919995 1.444025 7.689152 5.087406
390 5.014129 1.034016 5.915088 1.403861 7.526209 3.320977
400 7.003259 1.054528 5.874571 1.368681 7.506525 3.237211

55



Test DLC40, as with the previous tests performing their selected maneuvers at the

highest speed, shows a greater CTE for each frequency displayed in Fig. 4.9. Due to

the more complex DLC maneuver and the higher speeds of each test, it can be seen

in Table 4.5 that the simulation fails at all frequencies lower than 100 Hz, whereas

the Calibration and SS Tests successfully complete simulations at frequencies lower

than 100 Hz. Test DLC40 is shown to fail even sooner at 110 Hz. Even though Test

DLC30 appears to show a higher CTE at 100Hz, this is due to Test DLC40 failing

at that frequency.

Figure 4.9: DLC CTE
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The simulation AV model deviates greater when traveling at higher speeds and

performing a more complex driving maneuver, which is further evidenced observing

the Test DLC30 Head.Err. in Fig. 4.10. Tests DLC30 and DLC35 show a steady

increase in Head.Err. while descending to lower frequencies, while Test DLC40 is

greater and less predictable deviating from the trace path at the highest speed.

Figure 4.10: DLC Heading Error
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Chapter 5

Discussion

This chapter sets to draw conclusions from observations of the CTE and Head.Err.

data from each set of off road simulation tests. A determination is made about

whether or not a baseline low frequency can be successfully demonstrated when re-

peating and modeling real world off road AV scenarios. Additional simulation im-

provements outlined in this experiment are discussed, along with future research

moving forward.
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5.1 Conclusions

This thesis has successfully demonstrated that a low simulation frequency (<1000Hz)

can be used for repeatable CTE and Head.Err. performance when analyzing the

recorded path telemetry of a real vehicle platform and its virtual counterpart. Inte-

grated C++ Pure Pursuit and PID control algorithms running at the set simulation

frequency were used to drive a HMMWV military vehicle modeled within UE4 (a

single simulation platform) through multiple different off road driving maneuvers

performed by a real driver at varying low to original input velocities within a virtual

representation of the KRC test course.

A trade off between the set simulation frequency and the virtual AV’s deviation from

the real input trace path telemetry can be seen when observing each set of tests.

The CTE and Head.Err. for each test remained lowest when running at or near

the original input trace path sampled frequency, and slowly increased linearly until

hitting a point in which the simulation started deviating from the supplied trace

path exponentially. This was seen in the CTE for SS30 running at 400Hz [Fig. 4.7]

compared to running at 80Hz [Fig. 4.8]. The relationship between CTE and maximum

AV speed was positive, as maximum speed increased CTE increased. This was also

true for the relationship between Head.Err. and AV speed.
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Based on the overall average results for both CTE and Head.Err., a lower boundary

simulation frequency of 190Hz is recommended for path following when modeling and

repeating the stated straight, left, SS, and DLC real world off road driving maneuvers

up to the tested maximum speeds on the modeled terrain. Frequencies lower than

190Hz introduce noticeable path deviation, increasing the risk of simulation failure

especially when the driving maneuver was performed at higher velocities. The greater

deviation is also shown in the exponential increase found in the Gaussian fit line’s

slope when applied to the overall average results for both the CTE and Head.Err.

below 190Hz viewed in Fig. 4.1 and Fig. 4.2.

5.2 Future Research

More complex autonomous control methods besides Pure Pursuit could be imple-

mented and improved upon to control the vehicle model using the created UE4 sim-

ulation environment. An example of a more complex controller is the Stanley control

method, which includes lateral acceleration, yaw rate, and current CTE in its steer-

ing angle calculations. A similar experiment would be performed for each additional

control method at the same lower frequencies presented in this thesis to see if greater

stability can be achieved below 190Hz.

Once a path planning control method is chosen, an open-loop control system within
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the virtual world theoretically could be constructed between the simulation and a

real world AV platform to test the viability of future AV control using the simulated

environment. Data compared between the simulated path and actual path executed

on the real AV could be analyzed to see if a low CTE holds at a simulation frequency

of 190Hz. Any instability caused by introducing systems outside of an ideal virtually

simulated environment could also be observed (e.g., communication over a wired or

wireless network medium such as Ethernet or 802.11p).

A basic default set of virtual off road vehicle dynamics and characteristics (e.g. sus-

pension system, brake torques, lateral slip coefficients, etc.) were chosen to achieve

path following. Characteristics of the vehicle, such as the slip and yaw rate, still need

to be researched and evaluated within the simulation using UE4 and PhysX. Outside

of the default physical interactions between the PhysX vehicle and UE4 landscape

environment using the integrated Pure Pursuit and PID controllers, definite approx-

imations of what is possible between real and virtual world vehicle dynamics is still

unknown.

Even though the research in this thesis has demonstrated that low simulation fre-

quency AV modeling and repeatability using real world telemetry is possible, more

research is needed before any definitive statements can be made regarding the full

scope of testing real time control or path planning AV systems using a single visual

and physics simulation platform like UE4.
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Appendix A

Additional Figures

Appendix Fig. A.1 - Fig. A.9 displays the PID controller velocity control for each

different maneuver performed during the experiment. The velocity of the UE4 model

is plotted against the trace velocity of the input data.

Appendix Fig. A.10 - Fig. A.15 displays the additional CTE during simulation exe-

cution not given during Chapter 4 for each omitted maneuver besides the SS. These

figures further display the oscillation of the vehicle model when following a set path

at lower simulation frequencies.
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A.1 PID Velocity Control

Figure A.1: PID Control St5 400Hz
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Figure A.2: PID Control Left10 400Hz
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Figure A.3: PID Control Left15 400Hz
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Figure A.4: PID Control SS20 400Hz
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Figure A.5: PID Control SS25 400Hz
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Figure A.6: PID Control SS30 400Hz
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Figure A.7: PID Control DLC30 400Hz
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Figure A.8: PID Control DLC35 400Hz
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Figure A.9: PID Control DLC40 400Hz

82



A.2 CTE Error

Figure A.10: CTE Error St5 400Hz
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Figure A.11: CTE Error St5 60Hz
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Figure A.12: CTE Error Left10 400Hz
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Figure A.13: CTE Error Left10 60Hz
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Figure A.14: CTE Error DLC40 400Hz
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Figure A.15: CTE Error DLC40 110Hz

88



Appendix B

C++ Functions

Sections B.1 and B.2 contain the implementation of the .h and .cpp Pure Pursuit

and look-ahead algorithms. The following code is embedded within the UE4 main

function that runs during simulation execution.
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B.1 PurePursuit Controller.h

#pragma once

#include "CoreMinimal.h"

#include "Kismet/KismetMathLibrary.h"

#include "Kismet/KismetSystemLibrary.h"

#include <math.h>

#include "PID.h"

class PurePursuit_Controller

{

public:

float GetSteeringAngle(int k, int currStep);

float FindLookAhead(int currStep);

float GetAcceleration ();

// velocity pid variables

float pv = 6.0;

float iv = 0.25;

float dv = 0;

// Other class variables

float ceilingSpeed = 0;

float prevMaxSpeed = 0;

int preK = 0;

int i = 0;

int K = 10;

float steerMem [10] = {};

// Initialize pid controller

PID pidVelocity = PID(pv , iv, dv);

90



private:

FVector position;

FVector destination;

FRotator rotation;

};
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B.2 PurePursuit Controller.cpp

#include "PurePursuit_Controller.h"

/*** Calculate the value to turn the front tires ***/

float PurePursuit_Controller :: GetSteeringAngle(int K, ←↩
int currStep)

{

// Init var and save previous time step place

lookAhead = FindLookAhead(K);

float avgResult = 0;

// Get Steering Angles

for (int i = 0, i < K, i++)

{

// Init positions and rotations for steering ←↩
calculation

position = FVector(inputData.currX , inputData.currY ,←↩
inputData.currZ);

destination = trace.GetDestination(currStep + i + ←↩
lookAhead);

rotation.Roll = inputData.currR;

rotation.Pitch = inputData.currP;

rotation.Yaw = inputData.currH;

// Use engine functions to find yaw angle for ←↩
timestep

FRotator findRotation = UKismetMathLibrary ::←↩
FindLookAtRotation(position , destination);

FRotator newRotation = UKismetMathLibrary ::←↩
NormalizedDeltaRotator(findRotation , rotation);
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float yawRotation = FMath::←↩
GetMappedRangeValueUnclamped(FVector2D (-45.0, ←↩
45.0), FVector2D (-1.0, 1.0), newRotation.Yaw);

float preRotation = FMath::←↩
GetMappedRangeValueUnclamped(FVector2D (-45.0, ←↩
45.0), FVector2D (-1.0, 1.0), inputData.steerAngle)←↩
;

steerMem[i] = yawRotation;

}

for (int j = 0; j < K; j++)

{

avgResult = steerMem[j] + avgResult;

}

avgResult = avgResult / K;

}

// Return steering angle rotation

return avgResult;

}

/*** Determine if the vehicle is traveling in a straight←↩
line , if so then move the look ahead distance

forward , if a turn is approaching then move it closer. ←↩
Max = 200, Min = 10 ***/

float PurePursuit_Controller :: FindLookAhead(int currStep←↩
)

{

// Init variables

int phi = currStep;

int i = currStep;

int j = 10;

int ex = 0;
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int max_phi = 200; // max look ahead is 0.5 second

float steerAngle = 0;

float yawRotation = 0;

float steerThresh = 2.0;

FVector destLook;

// Look until either max look ahead is reached or a ←↩
turn is approaching

while (ex != 1)

{

// Current Look ahead destination

phi = i + j;

// Init positions and rotations

destLook = GetDestination(phi);

// Init positions and rotations for steering ←↩
calculation

position = FVector(inputData.currX , inputData.currY ,←↩
inputData.currZ);

rotation.Roll = inputData.currR;

rotation.Pitch = inputData.currP;

rotation.Yaw = inputData.currH;

// Use engine functions to find yaw angle

FRotator findRotation = UKismetMathLibrary ::←↩
FindLookAtRotation(position , destLook);

FRotator newRotation = UKismetMathLibrary ::←↩
NormalizedDeltaRotator(findRotation , rotation);

yawRotation = FMath :: GetMappedRangeValueUnclamped(←↩
FVector2D (-45.0, 45.0) , FVector2D (-1.0, 1.0), ←↩
newRotation.Yaw);
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steerAngle = FMath :: GetMappedRangeValueUnclamped(←↩
FVector2D (-1.0, 1.0), FVector2D (-45.0, 45.0) , ←↩
yawRotation);

// Determin if the path is straight or a turn ←↩
approaches. Set look ahead accordingly

if (( steerAngle > (steerMax * steerThresh) && ←↩
steerAngle < steerThresh) && (j != max_k))

{

j++;

}

else

{

ex = 1;

}

}

phi = j;

// Return look ahead value

return phi;

}

/*** Use the PID control library to return an ←↩
acceleration to reach the desired velocity ***/

float PurePursuit_Controller :: GetAcceleration ()

{

float pidResult = pidVelocity.calculate(inputData.←↩
maxSpeed , inputData.currSpeed);

return pidResult;

}
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